RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. FIFTH SEMESTER EXAMINATION, MARCH 2022

THIRD YEAR [BATCH 2019-22]

Date : $26/02/2022$	MATHEMATICS	
Time : 11am-1pm	Paper : MTMA CC11	Full Marks : 50

Group A

Answer any 4 questions. $[5 \ge 4 = 20 \text{ marks}]$ 1. Obtain a field with 4 elements by adjoining a root of $x^2 + x - 1$ to the field $\frac{\mathbb{Z}}{2\mathbb{Z}}$. $\left[5\right]$ 2. Determine the minimal polynomial over \mathbb{Q} for 1 + i. [5]3. Determine the degree of $1 + \sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} . $\left[5\right]$ 4. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ [5]5. Determine the degree of $\sqrt{5} + \sqrt[3]{7}$ over \mathbb{Q} . $\left[5\right]$ [5]

6. Determine the minimal polynomial over \mathbb{Q} for $2 + \sqrt{3}$.

Group B

Answer any one from Question Nos.7 to 8 and any two from Question Nos. 9 to 11

7. Use Charnes Big M-method to solve the L.P.P.

 $z = 5x_1 - 2x_2 + 3x_3$ Maximize $2x_1 + 2x_2 - x_3 \ge 2$ Subject to $3x_1 - 4x_2 \le 3$ $x_2 + 3x_3 \le 5$ $x_1, x_2, x_3 \ge 0.$

8. Use the two phase simplex method to solve the L. P. P.

Minimize
$$z = 3x_1 + 2x_2$$

Subject to
$$2x_1 + x_2 \ge 14$$
$$2x_1 + 3x_2 \ge 22$$
$$x_1 + x_2 \ge 1$$
$$x_1, x_2 \ge 0.$$

(a) Find out all basic solutions to the following equations identifying in each case the basic 9. vectors, basic and non-basic variables [5]

$$2x_1 - 5x_2 + x_3 + 3x_4 = 4$$

$$3x_1 - 10x_2 + 2x_3 + 6x_4 = 12$$

[6]

[6]

(b) Find the optimal solution of the following problem by solving its dual :

Minimize
$$z = x_1 + 2x_2 + 3x_3$$

Subject to $x_1 - x_2 + x_3 \ge 4$
 $x_1 + x_2 + 2x_3 \le 8$
 $x_2 - x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0.$

10. (a) Prove that $x_1 = 4, x_2 = 1, x_3 = 3$ is a feasible solution to the set of equations

$$2x_1 - 3x_2 + x_3 = 8,$$

$$x_1 + 2x_2 + 3x_3 = 15$$

Reduce the feasible solution to basic feasible solutions.

(b) A car hire company has one car in each of the five depots a, b, c, d and e . A customer in each of the five towns A, B, C, D and E requires a car. The distance (in km.) between the depots (origins) and the towns (destinations) where the customers are , given by the following distance matrix :

	a	b	с	d	e
А	20	40	30	50	40
В	70	40	60	80	40
\mathbf{C}	20	90	80	100	40
D	80	60	120	70	40
Е	20	80	50	80	80

How should the cars be assigned to the customers so as to minimize the distance travelled? [6]

11. (a) Find an optimal solution and corresponding cost of the following transportation problem

[6]

	D_1	D_2	D_3	D_4	a_i
O_1	6	1	9	3	70
O_2	11	5	2	8	55
O_3	10	12	4	7	90
b_i	85	35	50	45	,

(b) Examine analytically whether the following sets X are convex or not. [3+3]

i.
$$X = \{(x_1, x_2) : 2x_1 + x_2 \ge 20, x_1 + 2x_2 \le 80, x_1 + x_2 \le 50, x_1, x_2 \ge 0\}$$

ii. $X = \{(x_1, x_2) : 9x_1^2 + 4x_2^2 \le 36\}.$

_ _ _ _ × _ _ _ _ _

[7]

[6]